歡迎光臨管理范文網
當前位置:工作總結 > 總結大全 > 學期總結

數(shù)學知識點總結(十二篇)

發(fā)布時間:2023-04-02 15:15:08 查看人數(shù):59

數(shù)學知識點總結

【第1篇 初中一年級下學期數(shù)學知識點總結

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

(按名稱分) 錐 圓錐

棱錐

4、棱柱及其有關概念:

棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。

弧:圓上a、b兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數(shù)及其運算

1、有理數(shù)的分類

正有理數(shù)

有理數(shù) 零

負有理數(shù)

或 整數(shù)

有理數(shù)

分數(shù)

2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。解題時要真正掌握數(shù)形結合的思想,并能靈活運用。

4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數(shù)比較大?。赫龜?shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

7、有理數(shù)的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數(shù)的運算順序

先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數(shù)

1、代數(shù)式

用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

2、同類項

所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

3、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合并同類項。

第四章 平面圖形及其位置關系

1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數(shù)條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

8、線段的中點:

點m把線段ab分成相等的兩條相等的線段am與bm,點m叫做線段ab的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠b,∠c等。

④用三個大寫英文字母表示任一個角,如∠bad,∠bae,∠cae等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過a點作l的垂線,垂足為b點,線段ab的長度叫做點a到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

第五章 一元一次方程

1、方程

含有未知數(shù)的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結果仍是等式。

4、一元一次方程

只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的整式方程叫做一元一次方程。

5、解一元一次方程的一般步驟:

(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

第六章 生活中的數(shù)據

1、科學記數(shù)法

一般地,一個大于10的數(shù)可以表示成 的形式,其中 ,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。

2、扇形統(tǒng)計圖及其畫法:

扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。

畫法:

(1)計算不同部分占總體的百分比(在扇形中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數(shù)與360的比)。

(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數(shù)。

(3)在圓中畫出各個扇形,并標上百分比。

3、各種統(tǒng)計圖的優(yōu)缺點

條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

折線統(tǒng)計圖:能清楚地反映事物的變化情況。

扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

第七章 可能性

1、確定事件和不確定事件

(1 )、確定事件

必然事件:生活中,有些事情我們事先能肯定它一定會發(fā)生,這些事情稱為必然事件。

不可能事件:有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為不可能事件。

(2)、不確定事件:

有些事情我們事先無法肯定它會不會發(fā)生,這些事情稱為不確定事件

(3)、

必然事件

確定事件

事件 不可能事件

不確定事件

2、不確定事件發(fā)生的可能性

一般地,不確定事件發(fā)生的可能性是有大小的。

必然事件發(fā)生的可能性是1

不可能事件發(fā)生的可能性是0

【第2篇 初中一年級數(shù)學知識點總結(下學期)

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

(按名稱分) 錐 圓錐

棱錐

4、棱柱及其有關概念:

棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。

?。簣A上a、b兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數(shù)及其運算

1、有理數(shù)的分類

正有理數(shù)

有理數(shù) 零

負有理數(shù)

或 整數(shù)

有理數(shù)

分數(shù)

2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。解題時要真正掌握數(shù)形結合的思想,并能靈活運用。

4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數(shù)比較大?。赫龜?shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

7、有理數(shù)的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數(shù)的運算順序

先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數(shù)

1、代數(shù)式

用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

2、同類項

所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

3、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合并同類項。

第四章 平面圖形及其位置關系

1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數(shù)條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

8、線段的中點:

點m把線段ab分成相等的兩條相等的線段am與bm,點m叫做線段ab的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠b,∠c等。

④用三個大寫英文字母表示任一個角,如∠bad,∠bae,∠cae等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過a點作l的垂線,垂足為b點,線段ab的長度叫做點a到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

第五章 一元一次方程

1、方程

含有未知數(shù)的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結果仍是等式。

4、一元一次方程

只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的整式方程叫做一元一次方程。

5、解一元一次方程的一般步驟:

(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

【第3篇 2023初中一年級數(shù)學知識點總結(第一學期)

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

(按名稱分) 錐 圓錐

棱錐

4、棱柱及其有關概念:

棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。

弧:圓上a、b兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數(shù)及其運算

1、有理數(shù)的分類

正有理數(shù)

有理數(shù) 零

負有理數(shù)

或 整數(shù)

有理數(shù)

分數(shù)

2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。解題時要真正掌握數(shù)形結合的思想,并能靈活運用。

4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數(shù)比較大小:正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

7、有理數(shù)的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數(shù)的運算順序

先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數(shù)

1、代數(shù)式

用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

2、同類項

所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

3、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合并同類項。

第四章 平面圖形及其位置關系

1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數(shù)條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

8、線段的中點:

點m把線段ab分成相等的兩條相等的線段am與bm,點m叫做線段ab的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠b,∠c等。

④用三個大寫英文字母表示任一個角,如∠bad,∠bae,∠cae等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過a點作l的垂線,垂足為b點,線段ab的長度叫做點a到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

【第4篇 初中一年級數(shù)學知識點總結(第一學期)

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

(按名稱分) 錐 圓錐

棱錐

4、棱柱及其有關概念:

棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。

?。簣A上a、b兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數(shù)及其運算

1、有理數(shù)的分類

正有理數(shù)

有理數(shù) 零

負有理數(shù)

或 整數(shù)

有理數(shù)

分數(shù)

2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。解題時要真正掌握數(shù)形結合的思想,并能靈活運用。

4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數(shù)比較大?。赫龜?shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

7、有理數(shù)的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數(shù)的運算順序

先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數(shù)

1、代數(shù)式

用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

2、同類項

所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

3、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合并同類項。

第四章 平面圖形及其位置關系

1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數(shù)條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

8、線段的中點:

點m把線段ab分成相等的兩條相等的線段am與bm,點m叫做線段ab的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠b,∠c等。

④用三個大寫英文字母表示任一個角,如∠bad,∠bae,∠cae等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過a點作l的垂線,垂足為b點,線段ab的長度叫做點a到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

第五章 一元一次方程

1、方程

含有未知數(shù)的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結果仍是等式。

4、一元一次方程

只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的整式方程叫做一元一次方程。

5、解一元一次方程的一般步驟:

(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

第六章 生活中的數(shù)據

1、科學記數(shù)法

一般地,一個大于10的數(shù)可以表示成 的形式,其中 ,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。

2、扇形統(tǒng)計圖及其畫法:

扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。

畫法:

(1)計算不同部分占總體的百分比(在扇形中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數(shù)與360的比)。

(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數(shù)。

(3)在圓中畫出各個扇形,并標上百分比。

3、各種統(tǒng)計圖的優(yōu)缺點

條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

折線統(tǒng)計圖:能清楚地反映事物的變化情況。

扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

【第5篇 初一下學期數(shù)學知識點總結

第六章 實數(shù)

知識點一實數(shù)的分類

1、按定義分類: 2.按性質符號分類:

注:0既不是正數(shù)也不是負數(shù).

知識點二實數(shù)的相關概念

1.相反數(shù)

(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

(2)幾何意義:在數(shù)軸上原點的兩側,與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱.

(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.

2.絕對值 |a|≥0.

3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .

4.平方根

(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a≥0)的平方根記作.

(2)一個正數(shù)a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.

知識點三實數(shù)與數(shù)軸

數(shù)軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

知識點四實數(shù)大小的比較

1.對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.

2.正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.

3.無理數(shù)的比較大?。?/p>

知識點五實數(shù)的運算

1.加法

同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).

2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).

3.乘法

幾個非零實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)有奇數(shù)個時,積為負.幾個數(shù)相乘,有一個因數(shù)為0,積就為0.

4.除法

除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.

5.乘方與開方

(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù).

(2)正數(shù)和0可以開平方,負數(shù)不能開平方;正數(shù)、負數(shù)和0都可以開立方.

(3)零指數(shù)與負指數(shù)

知識點六有效數(shù)字和科學記數(shù)法

1.有效數(shù)字:

一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.

2.科學記數(shù)法:

把一個數(shù)用 (1≤ <10,n為整數(shù))的形式記數(shù)的方法叫科學記數(shù)法.

第七章 平面直角坐標系

一、知識網絡結構

二、知識要點

1、有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b) 。

2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系。

3、橫軸、縱軸、原點:水平的數(shù)軸稱為_軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4、坐標:對于平面內任一點p,過p分別向_軸,y軸作垂線,垂足分別在_軸,y軸上,對應的數(shù)a,b分別叫點p的橫坐標和縱坐標,記作p(a,b)。

5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。

7、坐標軸上點的坐標特點①_軸正半軸上的點:橫坐標 0,縱坐標 0;②_軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐

標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填“>”、“<”或“=”)

8、點p(a,b)到_軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。

9、對稱點的坐標特點①關于_軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數(shù);②關于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數(shù);③關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)。

10、點p(2,3) 到_軸的距離是 ; 到y(tǒng)軸的距離是 ; 點p(2,3) 關于_軸對稱的點坐標為( , );點p(2,3) 關于y軸對稱的點坐標為( , )。

11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與_軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與_軸平行、與y軸垂直 。如果點p(2,3)、q(2,6),這兩點橫坐標相同,則pq∥y軸,pq⊥_軸;如果點p(-1,2)、q(4,2),這兩點縱坐標相同,則pq∥_軸,pq⊥y軸。

12、平行于_軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數(shù)。如果點p(a,b) 在一、三象限角平分線上,則p點的橫坐標與縱坐標相同,即 a = b ;如果點p(a,b) 在二、四象限角平分線上,則p點的橫坐標與縱坐標互為相反數(shù),即 a = -b 。

13、表示一個點(或物體)的位置的方法:一是準確恰當?shù)亟⑵矫嬷苯亲鴺讼担欢钦_寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。

14、圖形的平移可以轉化為點的平移。坐標平移規(guī)律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右加、上加下減”的規(guī)律進行。如將點p(2,3)向左平移2個單位后得到的點的坐標為( , );將點p(2,3)向右平移2個單位后得到的點的坐標為( , );將點p(2,3)向上平移2個單位后得到的點的坐標為( , );將點p(2,3)向下平移2個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向左平移3個單位后再向下平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向上平移5個單位后得到的點的坐標為( , );將點p(2,3)先向右平移3個單位后再向下平移5個單位后得到的點的坐標為( , )。

【第6篇 七年級上學期數(shù)學知識點總結

1.列代數(shù)式的幾個注意事項:

(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;

(2)數(shù)與數(shù)相乘,仍應使用“×”乘,不用“·”乘,也不能省略乘號;

(3)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應寫成a;

2.幾個重要的代數(shù)式(m、n表示整數(shù))。

a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

若n是整數(shù),偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;

去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.

3.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);

(2)有理數(shù)的分類:①(3)注意:有理數(shù)中,1、0、-1② 是三個特殊的數(shù),

(1)只有符號不同的兩個數(shù),我們說其中一個

是另一個的相反數(shù);0的相反數(shù)還是0;

4.絕對值:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

(2)

絕對值可表示為:絕對值的問題經常分類討論;(4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,

5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

有理數(shù)法則及運算規(guī)律: (1)同號兩數(shù)相加, (2)異號兩數(shù)相加, (3)一個數(shù)與0相加,

2.有理數(shù)加法的運算律:(1)加法的交換律: 2)加法的結合律: 3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

3.有理數(shù)乘法法則:(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數(shù)同零相乘都得零;(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

4.有理數(shù)乘法的運算律:(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

5.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);

注意:零不能做除數(shù),

.

有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);

:乘方的定義(1)求相同因式積的運算,叫做乘方;(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;(3)

(4)據規(guī)

律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.

3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

5.混合運算法則:先乘方,后乘除,最后加減

1.下列代數(shù)式書寫規(guī)范的是 ( )

a.a×2 b.1 a c.(5÷3)a d.2a2

2.長方形的長為a,寬為b,則長方形的面積為 ( )

a.a+b b. ab c.ab d.2(a+b)

3.一個兩位數(shù),十位數(shù)字是a,個位數(shù)字是b,則這個兩位數(shù)是 ( )

a.ab b.a+b c.10a+b d.10b+a

4.下列說法正確的是 ( )

a.0和_不是單項式 b.- 的系數(shù)是

c._2y的系數(shù)是0 d.-22_2的次數(shù)是2

5.當a=1時,| a-3 |的值為 ( )

a.4 b.-4 c.2 d.-2

6.已知25_6y和5_2my是同類項,m的值為 ( )

a.2 b.3 c.4 d.2或3

7.合并同類項-2_2y+5_2y的結果是 ( )

a.3 b.-7_2y c.3_2y d.7_2y

8.下列去括號,正確的是 ( )

a.-(a+b)=-a-b b.-(3_-2)=-3_-2

c.a2-(2a-1)=a2-2a-1 d._-2(y-z)=_-2y+z

9.設m=2a-3b,n=-2a-3b,則m-n= ( )

a.4a-6b b.4ª c.-6b d.4a+6b

10.兩列火車都從a地駛向b地,已知甲車的速度為_千米/時,乙車的速度為y千米/時,經過3時,乙車距離b地5千米,此時甲車距離b地( )千米

a.3(-_+y)-5 b.3(_+y)-5 c.3(-_+y)+5 d.3(_+y)+5

二、填空題(每小題4分,共24分)

11.小穎今年n歲,去年小穎 歲,6年后小穎 歲.

13.5個連續(xù)正整數(shù),中間一個數(shù)為n,則這5個數(shù)的和為

14.-2a+1的相反數(shù)是 .

15.9,11,13, ,??,第10個數(shù)是 ,第n個數(shù)是 .

17.(6分)化簡下列各式:(1)_-y+5_-4y (2)-2_-(3_-1)

(3)(m-2n)-2(-2n+3m) (4)-2(_y-3y2)-

20.(8分)已知某三角形的一條邊長為m+n,另一條邊長比這條邊長大m-3,第三條邊長等于2n-m,求這個三角形的周長.

21.(8分)已知_2-_y=60,_y-y2=40,求代數(shù)式_2-y2和_2-2_y+y2的值.

下列說法正確的個數(shù)是

①一個有理數(shù)不是整數(shù)就是分數(shù)②一個有理數(shù)不是正數(shù)就是負數(shù)

③一個整數(shù)不是正的,就是負的④一個分數(shù)不是正的,就是負的

a 1 b 2 c 3 d 4

下列說法正確的是 ①0是絕對值最小的有理數(shù)②相反數(shù)大于本身的數(shù)是負數(shù)

③數(shù)軸上原點兩側的數(shù)互為相反數(shù)④兩個數(shù)比較,絕對值大的反而小

a①② b①③ c①②③ d①②③④

下列運算正確的是

a -5/7+2/7=-(5/7+2/7)=-1 b-7-2×5=-9×5=-45

c 3÷5/4×4/5=3/1=3 d。-(-3)2=-9

4.若a+b<0,ab<0,則

a a>0,b>0 b a<0,b<0

c a,b兩數(shù)一正一負,且正數(shù)的絕對值大于負數(shù)的絕對值

d a,b兩數(shù)一正一負,且負數(shù)的絕對值大于正數(shù)的絕對值

13.規(guī)定a*b=5a+2b-1,則(-4)*6的值為.

14.已知=3,=2,且ab<0,則a-b=。

16.-2-12×(1/3-1/4+1/2)

18.3/2×5/7-(-5/7)×5/2+(-1/2)÷7/5

23.已知1+2+3+?+31+32+33==17×33,求1-3+2-6+3-9+4-12+?+31-93+32-96+33-99的值。

一元一次方程

方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.

7.一元一次方程的標準形式:a_+b=0(_是未知數(shù),a、b是已知數(shù),且a≠0).

8.一元一次方程的最簡形式:a_=b(_是未知數(shù),a、b是已知數(shù),且a≠0).

9.一元一次方程解法的一般步驟:整理方程??去分母??去括號??移項??合并同類項??系數(shù)化為1??(檢驗方程的解

【第7篇 初三下學期數(shù)學知識點總結

第二十六章 二次函數(shù)

26.1 二次函數(shù)及其圖像

二次函數(shù)(quadratic function)是指未知數(shù)的次數(shù)為二次的多項式函數(shù)。二次函數(shù)可以表示為f(_)=a_^2+b_+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般的,自變量_和因變量y之間存在如下關系:

一般式

y=a_∧2;+b_+c(a≠0,a、b、c為常數(shù)),頂點坐標為(-b/2a,-(4ac-b∧2)/4a) ;

頂點式

y=a(_+m)∧2+k(a≠0,a、m、k為常數(shù))或y=a(_-h)∧2+k(a≠0,a、h、k為常數(shù)),頂點坐標為(-m,k)對稱軸為_=-m,頂點的位置特征和圖像的開口方向與函數(shù)y=a_∧2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;

交點式

y=a(_-_1)(_-_2) [僅限于與_軸有交點a(_1,0)和 b(_2,0)的拋物線] ;

重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。a的絕對值還可以決定開口大小,a的絕對值越大開口就越小,a的絕對值越小開口就越大。

牛頓插值公式(已知三點求函數(shù)解析式)

y=(y3(_-_1)(_-_2))/((_3-_1)(_3-_2)+(y2(_-_1)(_-_3))/((_2-_1)(_2-_3)+(y1(_-_2)(_-_3))/((_1-_2)(_1-_3) 。由此可引導出交點式的系數(shù)a=y1/(_1__2) (y1為截距)

求根公式

二次函數(shù)表達式的右邊通常為二次三項式。

求根公式

_是自變量,y是_的二次函數(shù)

_1,_2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)(如右圖)

求根的方法還有因式分解法和配方法

在平面直角坐標系中作出二次函數(shù)y=2_的平方的圖像,

可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。

不同的二次函數(shù)圖像

如果所畫圖形準確無誤,那么二次函數(shù)將是由一般式平移得到的。

注意:草圖要有 1本身圖像,旁邊注明函數(shù)。

2畫出對稱軸,并注明_=什么

3與_軸交點坐標,與y軸交點坐標,頂點坐標。拋物線的性質

軸對稱

1.拋物線是軸對稱圖形。對稱軸為直線_ = -b/2a。

對稱軸與拋物線的交點為拋物線的頂點p。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

頂點

2.拋物線有一個頂點p,坐標為p ( -b/2a ,4ac-b^2;)/4a )

當-b/2a=0時,p在y軸上;當δ= b^2;-4ac=0時,p在_軸上。

開口

3.二次項系數(shù)a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

決定對稱軸位置的因素

4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左; 因為若對稱軸在左邊則對稱軸小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同號

當a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要異號

可簡單記憶為左同右異,即當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab< 0 ),對稱軸在y軸右。

事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值。可通過對二次函數(shù)求導得到。

決定拋物線與y軸交點的因素

5.常數(shù)項c決定拋物線與y軸交點。

拋物線與y軸交于(0,c)

拋物線與_軸交點個數(shù)

6.拋物線與_軸交點個數(shù)

δ= b^2-4ac>0時,拋物線與_軸有2個交點。

δ= b^2-4ac=0時,拋物線與_軸有1個交點。

_______

δ= b^2-4ac<0時,拋物線與_軸沒有交點。_的取值是虛數(shù)(_= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

當a>0時,函數(shù)在_= -b/2a處取得最小值f(-b/2a)=4ac-b²/4a;在{_|_<-b/2a}上是減函數(shù),在

{_|_>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變

當b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=a_^2+c(a≠0)

特殊值的形式

7.特殊值的形式

①當_=1時 y=a+b+c

②當_=-1時 y=a-b+c

③當_=2時 y=4a+2b+c

④當_=-2時 y=4a-2b+c

二次函數(shù)的性質

8.定義域:r

值域:(對應解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)①[(4ac-b^2)/4a,

正無窮);②[t,正無窮)

奇偶性:當b=0時為偶函數(shù),當b≠0時為非奇非偶函數(shù)。

周期性:無

解析式:

①y=a_^2+b_+c[一般式]

⑴a≠0

⑵a>0,則拋物線開口朝上;a<0,則拋物線開口朝下;

⑶極值點:(-b/2a,(4ac-b^2)/4a);

⑷δ=b^2-4ac,

δ>0,圖象與_軸交于兩點:

([-b-√δ]/2a,0)和([-b+√δ]/2a,0);

δ=0,圖象與_軸交于一點:

(-b/2a,0);

δ<0,圖象與_軸無交點;

②y=a(_-h)^2+k[頂點式]

此時,對應極值點為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(_-_1)(_-_2)[交點式(雙根式)](a≠0)

對稱軸_=(_1+_2)/2 當a>0 且_≧(_1+_2)/2時,y隨_的增大而增大,當a>0且_≦(_1+_2)/2時y隨_

的增大而減小

此時,_1、_2即為函數(shù)與_軸的兩個交點,將_、y代入即可求出解析式(一般與一元二次方程連

用)。

交點式是y=a(_-_1)(_-_2) 知道兩個_軸交點和另一個點坐標設交點式。兩交點_值就是相應_1 _2值。

26.2 用函數(shù)觀點看一元二次方程

1. 如果拋物線 與_軸有公共點,公共點的橫坐標是 ,那么當 時,函數(shù)的值是0,因此 就是方程的一個根。

2. 二次函數(shù)的圖象與_軸的位置關系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

26.3 實際問題與二次函數(shù)

在日常生活、生產和科研中,求使材料最省、時間最少、效率等問題,有些可歸結為求二次函數(shù)的值或最小值。

【第8篇 2023初中一年級數(shù)學知識點總結(上學期)

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

(按名稱分) 錐 圓錐

棱錐

4、棱柱及其有關概念:

棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。

?。簣A上a、b兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數(shù)及其運算

1、有理數(shù)的分類

正有理數(shù)

有理數(shù) 零

負有理數(shù)

或 整數(shù)

有理數(shù)

分數(shù)

2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。解題時要真正掌握數(shù)形結合的思想,并能靈活運用。

4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數(shù)比較大?。赫龜?shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

7、有理數(shù)的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數(shù)的運算順序

先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數(shù)

1、代數(shù)式

用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

2、同類項

所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

3、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合并同類項。

第四章 平面圖形及其位置關系

1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數(shù)條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

8、線段的中點:

點m把線段ab分成相等的兩條相等的線段am與bm,點m叫做線段ab的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠b,∠c等。

④用三個大寫英文字母表示任一個角,如∠bad,∠bae,∠cae等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過a點作l的垂線,垂足為b點,線段ab的長度叫做點a到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

第五章 一元一次方程

1、方程

含有未知數(shù)的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結果仍是等式。

4、一元一次方程

只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的整式方程叫做一元一次方程。

5、解一元一次方程的一般步驟:

(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

第六章 生活中的數(shù)據

1、科學記數(shù)法

一般地,一個大于10的數(shù)可以表示成 的形式,其中 ,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。

2、扇形統(tǒng)計圖及其畫法:

扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。

畫法:

(1)計算不同部分占總體的百分比(在扇形中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數(shù)與360的比)。

(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數(shù)。

(3)在圓中畫出各個扇形,并標上百分比。

3、各種統(tǒng)計圖的優(yōu)缺點

條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

折線統(tǒng)計圖:能清楚地反映事物的變化情況。

扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

第七章 可能性

1、確定事件和不確定事件

(1 )、確定事件

必然事件:生活中,有些事情我們事先能肯定它一定會發(fā)生,這些事情稱為必然事件。

不可能事件:有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為不可能事件。

(2)、不確定事件:

有些事情我們事先無法肯定它會不會發(fā)生,這些事情稱為不確定事件

(3)、

必然事件

確定事件

事件 不可能事件

不確定事件

2、不確定事件發(fā)生的可能性

一般地,不確定事件發(fā)生的可能性是有大小的。

必然事件發(fā)生的可能性是1

不可能事件發(fā)生的可能性是0

【第9篇 初一上學期數(shù)學知識點歸納總結

(一)正負數(shù)

1.正數(shù):大于0的數(shù)。

2.負數(shù):小于0的數(shù)。

3.0即不是正數(shù)也不是負數(shù)。

4.正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

(二)有理數(shù)

1.有理數(shù):由整數(shù)和分數(shù)組成的數(shù)。包括:正整數(shù)、0、負整數(shù),正分數(shù)、負分數(shù)??梢詫懗蓛蓚€整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)

2.整數(shù):正整數(shù)、0、負整數(shù),統(tǒng)稱整數(shù)。

3.分數(shù):正分數(shù)、負分數(shù)。

(三)數(shù)軸

1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當?shù)拈L度為單位長度,以便在數(shù)軸上取點。)

2.數(shù)軸的三要素:原點、正方向、單位長度。

3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。

4.絕對值:正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負數(shù),絕對值大的反而小。

(四)有理數(shù)的加減法

1.先定符號,再算絕對值。

2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。

3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。5.a?b=a+(?b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。

(五)有理數(shù)乘法(先定積的符號,再定積的大?。?/p>

1.同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。

2.乘積是1的兩個數(shù)互為倒數(shù)。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數(shù)除法

1.先將除法化成乘法,然后定符號,最后求結果。

2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

3.兩數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。(七)乘方1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數(shù),n叫指數(shù))2.負數(shù)的奇數(shù)次冪是負數(shù),負數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。3.同底數(shù)冪相乘,底不變,指數(shù)相加。

4.同底數(shù)冪相除,底不變,指數(shù)相減。

(八)有理數(shù)的加減乘除混合運算法則

1.先乘方,再乘除,最后加減。

2.同級運算,從左到右進行。

3.如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

(九)科學記數(shù)法、近似數(shù)、有效數(shù)字。

第二章整式(一)整式

1.整式:單項式和多項式的統(tǒng)稱叫整式。

2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。

3.系數(shù);一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。

4。次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數(shù)項:不含字母的項叫做常數(shù)項。

8.多項式的次數(shù):多項式中,次數(shù)的項的次數(shù)叫做這個多項式的次數(shù)。

9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。

(二)整式加減整式加減運算時,如果遇到括號先去括號,再合并同類項。

1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。如果括號外的因數(shù)是正數(shù),去括號后原括號內各項的符號與原來的符號相同。如果括號外的因數(shù)是負數(shù),去括號后原括號內各項的符號與原來的符號相反。

2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變

【第10篇 高二下學期數(shù)學知識點總結

高二下學期知識點總結

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(shù)(30課時,12個)

1.映射;2.函數(shù);3.函數(shù)的單調性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質;11.對數(shù)函數(shù).12.函數(shù)的應用舉例。

三、數(shù)列(12課時,5個)

1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

四、三角函數(shù)(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質;10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的`圖象;13.正切函數(shù)的圖象和性質;14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復試驗。

選修ⅱ(24個)

十二、概率與統(tǒng)計(14課時,6個)

1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。

十三、極限(12課時,6個)

1.數(shù)學歸納法;2.數(shù)學歸納法應用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。

十四、導數(shù)(18課時,8個)

1.導數(shù)的概念;2.導數(shù)的幾何意義;3.幾種常見函數(shù)的導數(shù);4.兩個函數(shù)的和、差、積、商的導數(shù);5.復合函數(shù)的導數(shù);6.基本導數(shù)公式;7.利用導數(shù)研究函數(shù)的單調性和極值;8.函數(shù)的最大值和最小值。

十五、復數(shù)(4課時,4個)

1.復數(shù)的概念;2.復數(shù)的加法和減法;3.復數(shù)的乘法和除法;4.復數(shù)的一元二次方程和二項方程的解法。

【第11篇 初中一年級數(shù)學知識點總結(上學期)

一、知識框架

二.知識概念

1.有理數(shù):

(1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

(2)有理數(shù)的分類: ① ②

2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數(shù):

(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).

4.絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;

5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.

6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么 的倒數(shù)是 ;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負倒數(shù).

7. 有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數(shù)與0相加,仍得這個數(shù).

8.有理數(shù)加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

10 有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

11 有理數(shù)乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), .

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;

15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.

16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

18.混合運算法則:先乘方,后乘除,最后加減.

本章內容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題.

體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要.激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。

第二章 整式的加減

一.知識框架

二.知識概念

1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.

2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù)。

通過本章學習,應使學生達到以下學習目標:

1. 理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

2. 理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎上;理解合并同類項、去括號的依據是分配律;理解數(shù)的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數(shù)量關系,并用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。

第三章 一元一次方程

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

2.一元一次方程的標準形式: a_+b=0(_是未知數(shù),a、b是已知數(shù),且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數(shù)化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程.

(2)畫圖分析法: ………… 多用于“行程問題”

利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:c圓=2πr,s圓=πr2,c長方形=2(a+b),s長方形=ab, c正方形=4a,

s正方形=a2,s環(huán)形=π(r2-r2),v長方體=abc ,v正方體=a3,v圓柱=πr2h ,v圓錐= πr2h.

本章內容是代數(shù)學的核心,也是所有代數(shù)方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。

【第12篇 初中一年級數(shù)學知識點總結(上學期)2023

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。

平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

圓柱

生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

(按名稱分) 錐 圓錐

棱錐

4、棱柱及其有關概念:

棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

側棱:相鄰兩個側面的交線叫做側棱。

n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

7、三視圖

物體的三視圖指主視圖、俯視圖、左視圖。

主視圖:從正面看到的圖,叫做主視圖。

左視圖:從左面看到的圖,叫做左視圖。

俯視圖:從上面看到的圖,叫做俯視圖。

8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。

?。簣A上a、b兩點之間的部分叫做弧。

扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

第二章 有理數(shù)及其運算

1、有理數(shù)的分類

正有理數(shù)

有理數(shù) 零

負有理數(shù)

或 整數(shù)

有理數(shù)

分數(shù)

2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。解題時要真正掌握數(shù)形結合的思想,并能靈活運用。

4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

6、有理數(shù)比較大?。赫龜?shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。

7、有理數(shù)的運算 :

(1)五種運算:加、減、乘、除、乘方

(2)有理數(shù)的運算順序

先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

(3)運算律

加法交換律

加法結合律

乘法交換律

乘法結合律

乘法對加法的分配律

第三章 字母表示數(shù)

1、代數(shù)式

用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。

2、同類項

所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

3、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

4、去括號法則

(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。

(2)括號前是“﹣”,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。

5、整式的運算:

整式的加減法:(1)去括號;(2)合并同類項。

第四章 平面圖形及其位置關系

1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。

2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。

3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。

4、點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。

一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。

一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。

5、點和直線的位置關系有兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

6、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。

(2)過一點的直線有無數(shù)條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

(4)直線上有無窮多個點。

(5)兩條不同的直線至多有一個公共點。

7、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關系和它們的長度的大小關系是一致的。

8、線段的中點:

點m把線段ab分成相等的兩條相等的線段am與bm,點m叫做線段ab的中點。

9、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。

或:角也可以看成是一條射線繞著它的端點旋轉而成的。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四種:

①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠b,∠c等。

④用三個大寫英文字母表示任一個角,如∠bad,∠bae,∠cae等。

注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

12、角的度量

角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

13、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較

(3)角可以參與運算。

14、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

15、平行線:

在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“ab∥cd”,讀作“ab平行于cd”。

注意:

(1)平行線是無限延伸的,無論怎樣延伸也不相交。

(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。

16、平行線公理及其推論

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。

補充平行線的判定方法:

(1)平行于同一條直線的兩直線平行。

(2)在同一平面內,垂直于同一條直線的兩直線平行。

(3)平行線的定義。

17、垂直:

兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

直線ab,cd互相垂直,記作“ab⊥cd”(或“cd⊥ab”),讀作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂線的性質:

性質1:平面內,過一點有且只有一條直線與已知直線垂直。

性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。

19、點到直線的距離:過a點作l的垂線,垂足為b點,線段ab的長度叫做點a到直線l的距離。

20、同一平面內,兩條直線的位置關系:相交或平行。

第五章 一元一次方程

1、方程

含有未知數(shù)的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結果仍是等式。

4、一元一次方程

只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的整式方程叫做一元一次方程。

5、解一元一次方程的一般步驟:

(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

第六章 生活中的數(shù)據

1、科學記數(shù)法

一般地,一個大于10的數(shù)可以表示成 的形式,其中 ,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。

2、扇形統(tǒng)計圖及其畫法:

扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。

畫法:

(1)計算不同部分占總體的百分比(在扇形中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數(shù)與360的比)。

(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數(shù)。

(3)在圓中畫出各個扇形,并標上百分比。

3、各種統(tǒng)計圖的優(yōu)缺點

條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

折線統(tǒng)計圖:能清楚地反映事物的變化情況。

扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

第七章 可能性

1、確定事件和不確定事件

(1 )、確定事件

必然事件:生活中,有些事情我們事先能肯定它一定會發(fā)生,這些事情稱為必然事件。

不可能事件:有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為不可能事件。

(2)、不確定事件:

有些事情我們事先無法肯定它會不會發(fā)生,這些事情稱為不確定事件

(3)、

必然事件

確定事件

事件 不可能事件

不確定事件

2、不確定事件發(fā)生的可能性

一般地,不確定事件發(fā)生的可能性是有大小的。

必然事件發(fā)生的可能性是1

不可能事件發(fā)生的可能性是0

數(shù)學知識點總結(十二篇)

第一章豐富的圖形世界1、幾何圖形從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。平面圖形:有些幾…
推薦度:
點擊下載文檔文檔為doc格式

相關數(shù)學知識點信息

  • 數(shù)學知識點總結(十二篇)
  • 數(shù)學知識點總結(十二篇)59人關注

    第一章豐富的圖形世界1、幾何圖形從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。平面圖 ...[更多]

學期總結熱門信息