第1篇 初中數(shù)學三角形的幾何公理知識點總結 1000字
初中數(shù)學三角形的幾何公理知識點總結
三角形三角形具有穩(wěn)定性,在現(xiàn)實生活中有著非常多的體現(xiàn),比如衣服架的底座等。
三角形
15 定理 三角形任意兩邊的和大于第三邊
16 推論 三角形任意兩邊的差小于第三邊
17 三角形內角和定理 三角形三個內角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等
25 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的'兩個直角三角形全等
26 定理1 在角的平分線上的點到這個角的兩邊的距離相等
27 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
28 角的平分線是到角的兩邊距離相等的所有點的集合
29 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
30 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
31 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
32 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
33 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34 推論1 三個角都相等的三角形是等邊三角形
35 推論 2 有一個角等于60°的等腰三角形是等邊三角形
36 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
37 直角三角形斜邊上的中線等于斜邊上的一半
38 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
39 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
40 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
41 定理1 關于某條直線對稱的兩個圖形是全等形
42 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
43逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
44勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
45勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
三角形的內容又包括了好幾類,比如直角三角形、銳角三角形、鈍角三角形等。
第2篇 初中數(shù)學三角形斜邊公式總結 1400字
初中數(shù)學三角形斜邊公式總結
值得大家注意的是三角形斜邊公式必須以直角三角形為基礎,不可是其他的三角形。
三角形斜邊公式
(一)已知兩條直角邊的長度 1)可按公式:c2=a2+b2 (2是平方)
(二)如已知一條直邊和一個銳角,可用直角三角函數(shù)計算
直角三角形abc的六個元素中除直角c外,其余五個元素有如下關系
a+b=90度
sina=角a的對邊 / 斜邊
cosa=角a的鄰邊 / 斜邊
tga=角a的對邊 / 角a的鄰邊
ctga=角a的鄰邊 / 角a的對邊
例:角a等于30度,角a的對邊是4米,計算斜邊c是多少?
查表sin30度=0.5, c=4/0.5=8
其實說到底,三角形斜邊公式也就是我們常常運用到的勾股定理。
初中數(shù)學正方形定理公式
關于正方形定理公式的內容精講知識,希望同學們很好的掌握下面的內容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內容講解。
平行四邊形
平行四邊形的性質:
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的.對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的內容講解,希望給同學們的學習很好的幫助。
直角三角形的性質:
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質定理公式
下面是對等腰三角形的性質定理公式的內容學習,希望同學們認真看看。
等腰三角形的性質:
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內容講解學習哦。
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內角和定理:三角形的三個內角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;
三角形的三條角平分線交于一點(內心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
第3篇 總結初中數(shù)學三角形兩邊定理公式 1250字
總結初中數(shù)學三角形兩邊定理公式大全
三角形兩邊定理公式
定理 三角形兩邊的和大于第三邊
推論 三角形兩邊的差小于第三邊
通過上面對三角形兩邊定理公式的學習,相信同學們對上面的公式知識已經能很好的掌握了吧。
初中數(shù)學正方形定理公式
關于正方形定理公式的內容精講知識,希望同學們很好的掌握下面的內容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內容講解。
平行四邊形
平行四邊形的性質:
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的`內容講解,希望給同學們的學習很好的幫助。
直角三角形的性質:
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質定理公式
下面是對等腰三角形的性質定理公式的內容學習,希望同學們認真看看。
等腰三角形的性質:
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內容講解學習哦。
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內角和定理:三角形的三個內角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;
三角形的三條角平分線交于一點(內心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;