- 目錄
【第1篇 高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
導(dǎo)語(yǔ)仰望天空時(shí),什么都比你高,你會(huì)自卑;俯視大地時(shí),什么都比你低,你會(huì)自負(fù);只有放寬視野,把天空和大地盡收眼底,才能在蒼穹泛土之間找到你真正的位置。無(wú)須自卑,不要自負(fù),堅(jiān)持自信。高三頻道為你整理了《高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)》,歡迎閱讀,祝愿天下所有的學(xué)子們都能取得的成績(jī)!
1.高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1、二元一次不等式(組)表示平面區(qū)域的判斷方法:直線定界,測(cè)試點(diǎn)定域.
注意:不等式中不等號(hào)有無(wú)等號(hào),無(wú)等號(hào)時(shí)直線畫(huà)成虛線,有等號(hào)時(shí)直線畫(huà)成實(shí)線.測(cè)試點(diǎn)可以選一個(gè),也可以選多個(gè),若直線不過(guò)原點(diǎn),測(cè)試點(diǎn)常選取原點(diǎn).
2、求目標(biāo)函數(shù)的最值的一般步驟為:一畫(huà)二移三求.其關(guān)鍵是準(zhǔn)確作出可行域,理解目標(biāo)函數(shù)的意義.
3、常見(jiàn)的目標(biāo)函數(shù)有:
(1)、截距型:形如z=a_+by.
求這類(lèi)目標(biāo)函數(shù)的最值常將函數(shù)z=a_+by轉(zhuǎn)化為直線的斜截式:y=-a/b_+z/b,通過(guò)求直線的截距z/b的最值間接求出z的最值.
(2)、距離型:形如z=(_-a)2+(y-b)2.
(3)、斜率型:形如z=(y-b)/(_-a).
注意:轉(zhuǎn)化的等價(jià)性及幾何意義.
4、與線性規(guī)劃有關(guān)的應(yīng)用問(wèn)題,通常涉及化問(wèn)題.如用料最省、獲利等,其解題步驟是:
①設(shè)未知數(shù),確定線性約束條件及目標(biāo)函數(shù);
②轉(zhuǎn)化為線性規(guī)劃模型;
③解該線性規(guī)劃問(wèn)題,求出解;
④調(diào)整解.
2.高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質(zhì)
(1)對(duì)稱(chēng)性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈n,n≥2);
(6)可開(kāi)方:a>b>0?(n∈n,n≥2).
3.高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
兩角和差公式
兩角和與差的三角函數(shù)公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
萬(wàn)能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
萬(wàn)能公式推導(dǎo)
附推導(dǎo):
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......_,
(因?yàn)閏os^2(α)+sin^2(α)=1)
再把_分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可。
同理可推導(dǎo)余弦的萬(wàn)能公式。正切的萬(wàn)能公式可通過(guò)正弦比余弦得到。
4.高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。
2.在應(yīng)用條件時(shí),易a忽略是空集的情況
3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?
4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別。
6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。
7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)。
8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
5.高三數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號(hào)的分式:
1/(3-4倍根號(hào)2)化簡(jiǎn):
1×(3+4倍根號(hào)2)/(3-4倍根號(hào)2)^2;=(3+4倍根號(hào)2)/(9-32)=(3+4倍根號(hào)2)/-23
[解方程]
_^2-y^2=1991
[思路分析]
利用平方差公式求解
[解題過(guò)程]
_^2-y^2=1991
(_+y)(_-y)=1991
因?yàn)?991可以分成1×1991,11×181
所以如果_+y=1991,_-y=1,解得_=996,y=995
如果_+y=181,_-y=11,_=96,y=85同時(shí)也可以是負(fù)數(shù)
所以解有_=996,y=995,或_=996,y=-995,或_=-996,y=995或_=-996,y=-995
或_=96,y=85,或_=96,y=-85或_=-96,y=85或_=-96,y=-85
有時(shí)應(yīng)注意加減的過(guò)程。
【第2篇 高一年級(jí)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法
斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與_軸平行的線段仍然與_平行且長(zhǎng)度不變;②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
【第3篇 高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
導(dǎo)語(yǔ)高二變化的大背景,便是文理分科(或七選三)。在對(duì)各個(gè)學(xué)科都有了初步了解后,學(xué)生們需要對(duì)自己未來(lái)的發(fā)展科目有所選擇、有所側(cè)重。這可謂是學(xué)生們第一次完全自己把握、風(fēng)險(xiǎn)未知的主動(dòng)選擇。高二頻道為你整理了《高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)》,助你金榜題名!
1.高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1.函數(shù)的奇偶性
(1)若f(_)是偶函數(shù),那么f(_)=f(-_);
(2)若f(_)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(_)±f(-_)=0或(f(_)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
(5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問(wèn)題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域?yàn)閇a,b],求f(_)的定義域,相當(dāng)于_∈[a,b]時(shí),求g(_)的值域(即f(_)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對(duì)稱(chēng)性)
(1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;
(2)證明圖像c1與c2的對(duì)稱(chēng)性,即證明c1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在c2上,反之亦然;
(3)曲線c1:f(_,y)=0,關(guān)于y=_+a(y=-_+a)的對(duì)稱(chēng)曲線c2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0);
(4)曲線c1:f(_,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線c2方程為:f(2a-_,2b-y)=0;
(5)若函數(shù)y=f(_)對(duì)_∈r時(shí),f(a+_)=f(a-_)恒成立,則y=f(_)圖像關(guān)于直線_=a對(duì)稱(chēng);
(6)函數(shù)y=f(_-a)與y=f(b-_)的圖像關(guān)于直線_=對(duì)稱(chēng);
4.函數(shù)的周期性
(1)y=f(_)對(duì)_∈r時(shí),f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,則y=f(_)是周期為2a的周期函數(shù);
(2)若y=f(_)是偶函數(shù),其圖像又關(guān)于直線_=a對(duì)稱(chēng),則f(_)是周期為2︱a︱的周期函數(shù);
(3)若y=f(_)奇函數(shù),其圖像又關(guān)于直線_=a對(duì)稱(chēng),則f(_)是周期為4︱a︱的周期函數(shù);
(4)若y=f(_)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(_)是周期為2的周期函數(shù);
(5)y=f(_)的圖象關(guān)于直線_=a,_=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(_)是周期為2的周期函數(shù);
(6)y=f(_)對(duì)_∈r時(shí),f(_+a)=-f(_)(或f(_+a)=,則y=f(_)是周期為2的周期函數(shù);
5.方程k=f(_)有解k∈d(d為f(_)的值域);
2.高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
2.所謂輾轉(zhuǎn)相法,就是對(duì)于給定的兩個(gè)數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時(shí)的除數(shù)就是原來(lái)兩個(gè)數(shù)的公約數(shù).
3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過(guò)程是:對(duì)于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)就是所求的公約數(shù).
4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.
7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫(xiě)成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.
8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).
3.高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
(1)總體和樣本:
①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.
②把每個(gè)研究對(duì)象叫做個(gè)體.
③把總體中個(gè)體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:_1,_2,....,_研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量.
(2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
(3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
①抽簽法
②隨機(jī)數(shù)表法
③計(jì)算機(jī)模擬法
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
4.高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對(duì)稱(chēng)性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nn,n
(6)可開(kāi)方:a0
(nn,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
5.高二上冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
一、導(dǎo)數(shù)的應(yīng)用
1、用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2、生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類(lèi)比推理的難點(diǎn)是發(fā)現(xiàn)兩類(lèi)對(duì)象的相似特征,由其中一類(lèi)對(duì)象的特征得出另一類(lèi)對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類(lèi)對(duì)象之間的關(guān)系,通過(guò)兩類(lèi)對(duì)象已知的相似特征得出所需要的相似特征。
2、類(lèi)比推理:由兩類(lèi)對(duì)象具有某些類(lèi)似特征和其中一類(lèi)對(duì)象的某些已知特征,推出另一類(lèi)對(duì)象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類(lèi)討論。
通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
四、坐標(biāo)平面上的直線
1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
3、重難點(diǎn):初步建立代數(shù)方法解決幾何問(wèn)題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
五、圓錐曲線
1、內(nèi)容要目:直角坐標(biāo)系中,曲線c是方程f(_,y)=0的曲線及方程f(_,y)=0是曲線c的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問(wèn)題。
3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過(guò)代數(shù)方法解決幾何問(wèn)題。
【第4篇 高一數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)數(shù)量:只有大小,沒(méi)有方向的量.
(3)有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.
(4)零向量:長(zhǎng)度為0的向量.
(5)單位向量:長(zhǎng)度等于1個(gè)單位的向量.
(6)平行向量(共線向量):方向相同或相反的非零向量.
※零向量與任一向量平行.
(7)相等向量:長(zhǎng)度相等且方向相同的向量.
2.向量加法運(yùn)算:
⑴三角形法則的特點(diǎn):首尾相連.
⑵平行四邊形法則的特點(diǎn):共起點(diǎn)