- 目錄
-
第1篇數學概念知識點總結之同類二次根式 第2篇二次根式的知識點總結 第3篇二次根式運算的知識點總結 第4篇2023中考數學二次根式的應用知識點總結 第5篇考數學分式與二次根式知識點總結 第6篇初中數學知識點總結:二次根式的性質 第7篇初中數學二次根式的知識點總結 第8篇初中數學二次根式知識點總結 第9篇二次根式知識點總結 第10篇2023中考數學二次根式的加減法知識點總結 第11篇初中數學代數知識點分式與二次根式總結 第12篇初三年級上冊數學二次根式知識點總結
【第1篇 數學概念知識點總結之同類二次根式
數學概念知識點總結之同類二次根式
初中數學重要概念:同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數相同的二次根式叫做同類二次根式。
滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。
把分母中的根號劃去叫做分母有理化。
上述就是的小編為大家?guī)淼氖浅踔袛祵W重要概念:同類二次根式、最簡二次根式、分母有理化知識點總結。如果大家想要了解更多更全的初中數學知識點就來關注吧。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為_軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做_軸或橫軸,鉛直的數軸叫做y軸或縱軸,_軸或y軸統稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的`橫坐標、縱坐標,有序實數對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
【第2篇 二次根式的知識點總結
二次根式的知識點總結
知識點一: 二次根式的概念
形如a(a0)的式子叫做二次根式。
注:在二次根式中,被開放數可以是數,也可以是單項式、多項式、分式等代數式,但必須注意:因為負數沒有平方根,所以a0是a為二次根式的前提條件,如5,(_2+1),
(_-1) (_1)等是二次根式,而(-2),(-_2-7)等都不是二次根式。
知識點二:取值范圍
1. 二次根式有意義的條件:由二次根式的意義可知,當a0時a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數大于或等于零即可。
2. 二次根式無意義的條件:因負數沒有算術平方根,所以當a﹤0時,a沒有意義。
知識點三:二次根式a(a0)的非負性
a(a0)表示a的算術平方根,也就是說,a(a0)是一個非負數,即
0(a0)。
注:因為二次根式a表示a的算術平方根,而正數的算術平方根是正數,0的算術平方根是0,所以非負數(a0)的算術平方根是非負數,即0(a0),這個性質也就是非負數的算術平方根的性質,和絕對值、偶次方類似。這個性質在解答題目時應用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。
知識點四:二次根式(a) 的性質
(a)2=a(a0)
文字語言敘述為:一個非負數的算術平方根的平方等于這個非負數。
注:二次根式的.性質公式(a)2=a(a0)是逆用平方根的定義得出的結論。上面的公式也可以反過來應用:若a0,則a=(a)2,如:2=(2)2,1/2=(1/2)2.
知識點五:二次根式的性質
a2=|a|
文字語言敘述為:一個數的平方的算術平方根等于這個數的絕對值。
注:
1、化簡a2時,一定要弄明白被開方數的底數a是正數還是負數,若是正數或0,則等于a本身,即a2=|a|=a (a若a是負數,則等于a的相反數-a,即a2=|a|=-a (a﹤0);
2、a2中的a的取值范圍可以是任意實數,即不論a取何值,a2一定有意義;
3、化簡a2時,先將它化成|a|,再根據絕對值的意義來進行化簡。
知識點六:(a)2與a2的異同點
1、不同點:(a)2與a2表示的意義是不同的,(a)2表示一個非負數a的算術平方根的平方,而a2表示一個實數a的平方的算術平方根;在(a)2中,而a2中a可以是正實數,0,負實數。但(a)2與a2都是非負數,即(a)20,a20。因而它的運算的結果是有差別的,(a)2=a(a0) ,而a2=|a|。
2、相同點:當被開方數都是非負數,即a0時,
(a)2=a﹤0時,(a)2無意義,而a2=|a|=-a.
【第3篇 二次根式運算的知識點總結
二次根式運算的知識點總結
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為_軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的`方向分別為兩條數軸的正方向。水平的數軸叫做_軸或橫軸,鉛直的數軸叫做y軸或縱軸,_軸或y軸統稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
【第4篇 2023中考數學二次根式的應用知識點總結
導語新一輪中考復習備考周期正式開始,為各位初三考生整理了各學科的復習攻略,主要包括中考必考點、中考??贾R點、各科復習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《2023中考數學二次根式的應用知識點總結》,僅供參考!
二次根式的應用
知識點總結
二次根式的應用主要體現在兩個方面:1.利用從特殊到一般,在由一般到特殊的重要思想方法,解決一些規(guī)律探索性問題;2.利用二次根式解決長度、高度計算問題,根據已知量,求出一些長度或高度,或設計省料的方案,以及圖形的拼接、分割問題。這個過程需要用到二次根式的計算,其實就是化簡求值。
常見考法
(1)設計一些規(guī)律探索問題提高學生的想象力和創(chuàng)造力;(2)聯系生活實際設計一些方案探究題。
誤區(qū)提醒
(1)不能通過觀察,歸納、猜想尋找出共同的規(guī)律,并運用這種規(guī)律解決問題;
(2)不會應用數學的知識解決實際生活中的問題。
【第5篇 考數學分式與二次根式知識點總結
考數學分式與二次根式知識點總結
1指數的擴充
2分式和分式的基本性質
設f,g是一元或多元多項式,g的次數高于零次,則稱f,g之比f/g為分式
分式的基本性質分數的分子與分母都乘以或除以同一個不等于0的數,分數的值不變
3分式的約分和通分
分式的約分是將分子與分母的公因式約去,使分式化簡
如果一個分式的分子與分母沒有一次或一次以上的公因式,且各系數沒有大于1的公約數,則此分式成為既約分式既約分式也就是最簡分式
對于分母不相同的幾個分式,將每個分式的'分子與分母乘以適當的非零多項式,使各分式的分母相同,而各分式的值保持不變,這種運算叫做通分
4分式的運算
5分式方程
方程的兩遍都是有理式,這樣的方程成為有理方程如果有理方程中含有分式,則稱為分式方程
二次根式
1根式
在實數范圍內,如果n個_相乘等于a,n是大于1的整數,則稱_為a的n次方根
含有數字與變元的加,減,乘,除,乘方,開方運算,并一定含有變元開方運算的算式成為無理式
2最簡二次根式與同類根式
具備下列條件的二次根式稱為最簡二次根式:(1)被開方式的每一個因式的指數都小于開方次數(2)根號內不含有分母
如果幾個二次根式化成最簡根式以后,被開方式相同,那么這幾個二次根式叫做同類根式
3二次根式的運算
4無理方程
根號里含有未知數的方程叫做無理方程。
【第6篇 初中數學知識點總結:二次根式的性質
初中數學知識點總結:二次根式的性質
初中數學知識點總結:二次根式的性質
各位初中的朋友們,下面的小編為大家整合的是初中數學知識點大全之二次根式的性質。
以上就是的小編為大家整合的初中數學知識點大全之二次根式的性質,相信各位同學們都已經做好筆記了吧,接下來還有更多的初中數學知識點總結等著同學們哦。想要了解更多更全的初中數學知識就來關注吧。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為_軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做_軸或橫軸,鉛直的數軸叫做y軸或縱軸,_軸或y軸統稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的'內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【第7篇 初中數學二次根式的知識點總結
關于初中數學二次根式的知識點總結
知識點總結
二次根式的應用主要體現在兩個方面:1.利用從特殊到一般,在由一般到特殊的重要思想方法,解決一些規(guī)律探索性問題;2.利用二次根式解決長度、高度計算問題,根據已知量,求出一些長度或高度,或設計省料的方案,以及圖形的拼接、分割問題。這個過程需要用到二次根式的計算,其實就是化簡求值。
常見考法
(1)設計一些規(guī)律探索問題提高學生的`想象力和創(chuàng)造力;(2)聯系生活實際設計一些方案探究題。
誤區(qū)提醒
(1)不能通過觀察,歸納、猜想尋找出共同的規(guī)律,并運用這種規(guī)律解決問題;
(2)不會應用數學的知識解決實際生活中的問題。
典型例題小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁出一塊面積為300cm2的長方形紙片,使它的長、寬比為3:2,不知道能否裁出來,正在發(fā)愁你能幫他解決嗎?
【第8篇 初中數學二次根式知識點總結
初中數學二次根式知識點總結
初中數學二次根式知識點歸納
二次根式的內容其實很廣很復雜,接下來讓我們來學習二次根式知識點吧。
二次根式
1、如果一個數的平方等于a,那么這個數叫做a的平方根。
即,如果一個數_=a,那么這個數_是a的平方根。
2、正數a的'正的平方根和零的平方根統稱為算術平方根,用√ā(a≥0)來表示。
二次根式的定義和概念:
1、定義:一般形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,表示a的算術平方根;當a小于0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)被開方數必須大于等于0。
2、概念:式子√ā(a≥0)叫二次根式?!台?a≥0)是一個非負數。其中,a叫做被開方數。
√a的性質和幾何意義 1)a≥0 ; √a≥0 [ 雙重非負性 ]
2)(√a)^2=a (a≥0)[任何一個非負數都可以寫成一個數的平方的形式]
3) c=√a^2+b^2表示直角三角形內,斜邊等于兩直角邊的平方和的根號,即勾股定理推論。
4) √a^2 = |a|
化最簡二次根式 如:不含有可化為平方數或平方式的因數或因式的有√2、√3、√6、√7、√a(a≥0)、√_+y 等;
含有可化為平方數或平方式的因數或因式的有√4、√9、√16、√25、√a^2、√(_+y)^2、√_^2+2_y+y^2等
最簡二次根式同時滿足下列三個條件:(1)被開方數的因數是整數,因式是整式;(2)被開方數中不含有能開的盡的因式;(3)被開方數不含分母。
溫馨提示:看過初二數學知識點之二次根式,同學們都掌握了吧。
【第9篇 二次根式知識點總結
二次根式知識點總結
上海初中數學二次根式知識點
知識要領:正數a的正的平方根和零的平方根統稱為算術平方根,用√ā(a≥0)來表示。
二次根式
1、如果一個數的平方等于a,那么這個數叫做a的平方根。
即,如果一個數_=a,那么這個數_是a的平方根。
二次根式的定義和概念:
1、定義:一般形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,表示a的算術平方根;當a小于0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)被開方數必須大于等于0。
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。其中,a叫做被開方數。
√a的性質和幾何意義 1)a≥0 ; √a≥0 [ 雙重非負性 ]
2)(√a)^2=a (a≥0)[任何一個非負數都可以寫成一個數的平方的形式]
3) c=√a^2+b^2表示直角三角形內,斜邊等于兩直角邊的平方和的根號,即勾股定理推論。
4) √a^2 = |a|
化最簡二次根式
如:不含有可化為平方數或平方式的因數或因式的有√2、√3、√6、√7、√a(a≥0)、√_+y 等;
含有可化為平方數或平方式的因數或因式的有√4、√9、√16、√25、√a^2、√(_+y)^2、√_^2+2_y+y^2等
最簡二次根式同時滿足下列三個條件:(1)被開方數的因數是整數,因式是整式;(2)被開方數中不含有能開的盡的因式;(3)被開方數不含分母。
知識點總結:一般形如√ā(a≥0)的代數式叫做二次根式。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為_軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的`規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做_軸或橫軸,鉛直的數軸叫做y軸或縱軸,_軸或y軸統稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【第10篇 2023中考數學二次根式的加減法知識點總結
導語新一輪中考復習備考周期正式開始,為各位初三考生整理了各學科的復習攻略,主要包括中考必考點、中考??贾R點、各科復習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《2023中考數學二次根式的加減法知識點總結》,僅供參考!
二次根式的加減法
知識點1:同類二次根式
(ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數及根指數有關,而與根號外的因式無關。
知識點2:合并同類二次根式的方法
合并同類二次根式的理論依據是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數相加,根指數和被開方數都不變,不是同類二次根式的不能合并。
知識點3:二次根式的加減法則
二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數相加,根式不變。
知識點4:二次根式的混合運算方法和順序
運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內的。
知識點5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數相乘,被開方數相乘,與兩根式是否是同類根式無關,加減法中,系數相加,被開方數不變而且兩根式須是同類最簡根式。
【第11篇 初中數學代數知識點分式與二次根式總結
初中數學代數知識點分式與二次根式總結
1 分式與分式方程
11 指數的擴充
12 分式和分式的基本性質
設f,g是一元或多元多項式,g的次數高于零次,則稱f,g之比f/g為分式
分式的基本性質 分數的分子與分母都乘以或除以同一個不等于0的.數,分數的值不變
13 分式的約分和通分
分式的約分是將分子與分母的公因式約去,使分式化簡
如果一個分式的分子與分母沒有一次或一次以上的公因式,且各系數沒有大于1的公約數,則此分式成為既約分式既約分式也就是最簡分式
對于分母不相同的幾個分式,將每個分式的分子與分母乘以適當的非零多項式,使各分式的分母相同,而各分式的值保持不變,這種運算叫做通分
14 分式的運算
15 分式方程
方程的兩遍都是有理式,這樣的方程成為有理方程如果有理方程中含有分式,則稱為分式方程
2 二次根式
21 根式
在實數范圍內,如果n個_相乘等于a,n是大于1的整數,則稱_為a的n次方根
含有數字與變元的加,減,乘,除,乘方,開方運算,并一定含有變元開方運算的算式成為無理式
22 最簡二次根式與同類根式
具備下列條件的二次根式稱為最簡二次根式:(1)被開方式的每一個因式的指數都小于開方次數 (2)根號內不含有分母
如果幾個二次根式化成最簡根式以后,被開方式相同,那么這幾個二次根式叫做同類根式
23 二次根式的運算
24 無理方程
根號里含有未知數的方程叫做無理方程
【第12篇 初三年級上冊數學二次根式知識點總結
知識點一: 二次根式的概念
形如√a(a≥0)的式子叫做二次根式。
注:在二次根式中,被開放數可以是數,也可以是單項式、多項式、分式等代數式,但必須注意:因為負數沒有平方根,所以a≥0是√a為二次根式的前提條件,如√5,√(_2+1),
√(_-1) (_≥1)等是二次根式,而√(-2),√(-_2-7)等都不是二次根式。
知識點二:取值范圍
1. 二次根式有意義的條件:由二次根式的意義可知,當a≥0時√a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數大于或等于零即可。
2. 二次根式無意義的條件:因負數沒有算術平方根,所以當a﹤0時,√a沒有意義。
知識點三:二次根式√a(a≥0)的非負性
√a(a≥0)表示a的算術平方根,也就是說,√a(a≥0)是一個非負數,即
√a≥0(a≥0)。
注:因為二次根式√a表示a的算術平方根,而正數的算術平方根是正數,0的算術平方根是0,所以非負數(a≥0)的算術平方根是非負數,即√a≥0(a≥0),這個性質也就是非負數的算術平方根的性質,和絕對值、偶次方類似。這個性質在解答題目時應用較多,如若√a+√b=0,則a=0,b=0;若√a+|b|=0,則a=0,b=0;若√a+b2=0,則a=0,b=0。
知識點四:二次根式(√a) 的性質
(√a)2=a(a≥0)
文字語言敘述為:一個非負數的算術平方根的平方等于這個非負數。
注:二次根式的性質公式(√a)2=a(a≥0)是逆用平方根的定義得出的結論。上面的公式也可以反過來應用:若a≥0,則
a=(√a)2,如:2=(√2)2,1/2=(√1/2)2.
知識點五:二次根式的性質
√a2=|a|
文字語言敘述為:一個數的平方的算術平方根等于這個數的絕對值。
注:
1、化簡√a2時,一定要弄明白被開方數的底數a是正數還是負數,若是正數或0,則等于a本身,即√a2=|a|=a (a≥0);若a是負數,則等于a的相反數-a,即√a2=|a|=-a (a﹤0);
2、√a2中的a的取值范圍可以是任意實數,即不論a取何值,√a2一定有意義;
3、化簡√a2時,先將它化成|a|,再根據絕對值的意義來進行化簡。
知識點六:(√a)2與√a2的異同點
1、不同點:(√a)2與√a2表示的意義是不同的,(√a)2表示一個非負數a的算術平方根的平方,而√a2表示一個實數a的平方的算術平方根;在(√a)2中,而√a2中a可以是正實數,0,負實數。但(√a)2與√a2都是非負數,即(√a)2≥0,√a2≥0。因而它的運算的結果是有差別的,(√a)2=a(a≥0) ,而√a2=|a|。
2、相同點:當被開方數都是非負數,即a≥0時,
(√a)2=√a2;a﹤0時,(√a)2無意義,而√a2=|a|=-a.